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Abstract : A novel synthesis of the known, la-hydroxyvitamin D A-ring precursor 10, in 
racemic form, is described based upon (i) the stereoselective cycloaddition of allene-dienophile 2 
onto 3-trimethylsilyloxyfuran I to give 3, and (ii) the samarium iodide induced reductive opening 
of the oxygen bridge in 4 to yield hydroxyketone 5, as key-steps. 

Since the discovery of la,25dihydroxyvitamin D3 as the active metabolite of the vitamin many 
synthetic efforts have been produced in this area.12 The more recent discovery of a much expanded spectrum of 
biological activities has further initiated an impressive search for analogues with potential therapeutic activity.3~~ 

Basic strategies for the construction of the la-hydroxylated vitamin D skeleton include : (i) partial 
syntheses involving the introduction of the la-hydroxy group onto the vitamin D structure or the 
photochemical cleavage of an adequately functionalized 7-dehydrocholesterol derivative, followed by the 
spontaneous rearrangement of the resulting previtamin triene to vitamin D;5 (ii) total syntheses which mostly 
involve the coupling of an A-ring precursor with the CD-ring part of the vitamin D skeleton, hence offering 
the advantages of convergency and flexibility.6 Most popular among the latter is the Wittig-Homer reaction of 
the lithium carbanion derived from phosphine oxide I (equation 1),7 based upon the original approach of 
Lythgoe and co-workers.* In this paper we wish to describe a novel stereoselective synthesis of (*)-lo, a 
known precursor of I.9 

Ph2 70 

la, 25- (OH)2 Vitamin Ds 

Central in the strategy stands the stereoselective cycloaddition between a 13disubstituted allene and a 
1,3-dioxydiene to give an adequately functionalized, full A-ring skeleton possessing all the required 
stereochemical features, in particular the (Z)-configuration at d-6 and the la-configuration at C-l. 
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As shown in scheme 1 obtention of the latter configuration can involve the combination of either (a) the 
(M)-allene with the (Z)-diene to give IIIa, or (b) the (P)-allene with the (E)-diene to give IIIe. In both 
cases the shown stereochemical features, i.e., the relative configuration at stereocenters C-l and C-10, and the 
(Z)-configuration at the As&ond, result from the preferred endo-addition to the least hindered side of the 
allene.lO In both cases we note that the absolute configuration at C- 1 is determined by the chirality of the allene 
(via C-10). The further obtention of the rrans-relation between the protected hydroxy groups in 10 will result 
from an internal assisted hydride reduction requiring the axial orientation of the hydroxygroup at C-l (vide 
infra); this orientation, however, would be available in IIIa. but not in IIIe, since it was anticipated that the 

severe allylic strain caused by the substituent at C-6 would dominate the ring conformation by enforcing the 
methoxycarbonyl group at C-10 in the axial position. 11 Following the above consideration a diene of the (Z)- 
type is thus required. Because of our longstanding interest in the use of furan as a diene in (intramolecular) 
Diels-Alder reactions,12 we decided to investigate the potential of 3-trimethylsilyloxyfuran in the present 
context.*3114 The resulting route is shown in scheme 2. 

The cycloaddition between the known 3-trimethylsilyloxyfuran (1)‘s and an excess of the 
p-methoxyphenylmethyl protected methyl 5-hydroxypenta-2,3-dienoate (2p leads smoothly (4 days, r.t., 
ether) to adduct 3 and, after methanol work-up, to bicyclic ketone 4 in 53 46 isolated yield.17 Only one 
diastereomer was detected, the moderate yield being due to the slow decomposition of the allene. The shown 
configuration in 4 is substantiated by the vicinal coupling J(l,lO) = 5.7 Hz.~~*~* The subsequent crucial 
reductive opening of the oxygen bridge in 4 was realized in good yield (56 96 isolated 5 with 22 % of starting 
material)17 with samarium(II)io (THF MeOH, -78’C),l9 followed by careful low temperature acid 

quenching (2 equivs of acetic acid in THF, -90°C). Under these conditions no double bond isomerization is 
observed. The trans-diaxial conformation of 5 follows from the vicinal coupling J(1.10) = 3.8 Hz). The 
subsequent reduction of the hydroxy ketone 5 with aluminum hydride (THF, -78“C) led stemoselectively to the 
rruns-diol 6 (62 % yield together with some starting material)*7 presumably via prior complexation with the 
axially oriented la-hydroxy group. 20 The equatorial orientation of the 3.hydroxy group follows from 

tH NMR analysis.17 
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TBDMSO*** 

~TB~MS~~~~So~~~~~~~S~o,~,~~~Me 

9 R=MPM 8 6 R=H 

10 R=H 7 R=TBDMS 

(a) Et20, r.t., 4 days; (b) MeOH. r.t., 10 min (53 %); (c) SmI2, THF, -78’C. 10 min; CH3COOH, THF, 
-9O’C (56 %); (d) AlH3, THF, -78’C, 70 min (62 %); (e) t.but ldimethylsilyltriflate, 2b-lutidine, 
CH2C12, r.t., 105 min (71 %); (f) LAH. THF, r.t., 30 min (70 %! ); (g) o-nitrophenyl selenocyanate, 
n.BusP, THF, r.t.. 2 h (55 %); (h) H202. CH2C12. r.t., 18 h (70 %); (i) DDQ, H20. CHzCl2, r.t. (50 %). 

Scheme 2 

After protection of the diol (t-butyldimethylsilyltriflate, dichloromethane; 71 46 yield),21 the ester in 7 was 
reduced (lithium aluminum hydride, THF, r.t.; 70 46 yield), and the resulting primary alcohol 8 dehydrated 

((i) : o-nitrophenyl selenocyanate; (ii) : hydrogen peroxide)22 to 9. Eventual deprotection (DDQ. dichloro- 
methane-water)23 led to the alcohol 10, the structure of which was fully confirmed by spectral comparison with 
authentic (+)-lo.% 

The practical importance of the above route mainly resides in the possibility of including modifications 
which could be useful for the preparation of la-hydroxylated A-ring analogues. Obviously, a further 
requimment is the elaboration of the enantioselective version which is presently under development.25 
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